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For populations worldwide, exposures to arsenic (As) and mer-
cury (Hg) are a fact of life.1,2 Millions of people consume drink-
ing water with elevated As levels, potentially increasing their risk
of cancer and other diseases3; as for Hg, billions regularly consume
seafood4 or rice,5 the most common exposure sources. These wide-
spread exposures and their potentially severe adverse health effects
make As and Hg sources of concern across the globe.

Both As (a metalloid that combines properties of metals and non-
metals6) and Hg exist in elemental, organic, and inorganic forms.7,8

Most research on health effects has focused on inorganic arsenic
(iAs) and the organic compound methylmercury (MeHg); organic As
(oAs) and inorganic Hg (iHg) are thought to be less toxic.8,9,10,11,12

Many studies have demonstrated the toxicity of iAs and MeHg; how-
ever, not everyone responds to exposures in the same way.

Recently, researchers have homed in on the role of the human
microbiome in mediating how As and Hg affect chronic disease
risk.2,13 Their work is revealing complex and bidirectional inter-
actions between these toxic metals and the trillions of microbes
in our gut.2

Arsenic Sources and Toxicity
Natural weathering and erosion cause certain minerals in rocks to
release iAs into the soil, where it dissolves into groundwater and
surface water. Although geology is the cause of most As contami-
nation in drinking water, human activities—such as coal burning,
mining, and smelting—can also contribute.7

Drinking water is the most common source of human exposure
to iAs.3 Some 200million people worldwide—in Bangladesh,
India, Argentina, the United States, and elsewhere—regularly
drink water with iAs concentrations exceeding the World Health
Organization guideline of 10 lg=L.3,14 Infants are at particular risk
when formula is mixed with iAs-contaminatedwater.15

Rice and seafood are also significant sources of As expo-
sure.5,10 Rice is a staple food for 3:5 billion people,5 and fish is
an important source of animal protein for more than 3 billion peo-
ple.4 Rice, which is typically grown in flooded paddies,16 is what
is known as a hyperaccumulator; the plants readily take up iAs
from the soil or irrigation water.17 The metal then concentrates in
the outer layer of the grain.18

Seafood, especially shellfish, is known to contain organic
arsenicals.10 Although generally considered less toxic than iAs,
some oAs compounds and metabolites have demonstrated cyto-
toxic effects in vitro.19,20,21 Margaret Karagas, a professor of epi-
demiology at the Dartmouth Geisel School of Medicine, believes
more detailed studies are needed on the prevalence and toxicity
of oAs compounds in both seafood10 and rice.22 “In parts of the
world where arsenic levels in drinking water are not elevated,
food is the main exposure source, especially for babies and chil-
dren who regularly consume rice cereal or rice,” says Karagas.
“Relative to body weight, arsenic levels in young children can be
three times higher than in adults.”23

iAs is a Group 1 carcinogen causally linked to skin, bladder,
and lung cancer, with probable or possible links to several other

Most arsenic contamination results from natural sources, whereas most mercury contamination comes from human activities. Images, left to right: © HM
Shahidul Islam/Shutterstock; © iStockphoto/6381380.
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cancers.24 It has also been associated with type 2 diabetes and
diseases of the cardiovascular, nervous, respiratory, and immune
systems.3 iAs and its metabolites can cross the placenta,25 and fe-
tal exposure has been associated with lower birth weight26 and
adverse neurodevelopmental effects.27,28,29

Mercury Sources and Toxicity
In contrast to As, the majority of Hg contamination occurs as a
result of human activities, especially fossil fuel combustion.30 Hg
emissions can travel far from the original source before being de-
posited, on soil and water. Aquatic bacteria convert deposited Hg
to MeHg, which marine creatures readily absorb. MeHg biomag-
nifies from the bottom to the top of the marine and freshwater
food webs30; levels in the tissue of predatory ocean fish and
mammals can be more than a million times higher than in the sur-
rounding water.31 This means that populations with high seafood
consumption rates, such as coastal Indigenous peoples with
strong cultural ties to the sea4,32 may experience chronic high
exposures to MeHg.

Bacteria in flooded rice paddies produce MeHg that can reach
the grain.16 Although rice typically contains a lower proportion
of MeHg than seafood, exposure levels can be substantial in pop-
ulations that consume rice several times a day.33 As with iAs,
this exposure is a concern for infants who regularly eat rice cereal
and other rice-derived foods.1 Some studies suggest that the con-
sumption of several daily rice meals during pregnancy may be
more harmful to the fetus than a MeHg-rich seafood diet, which
offers nutritional benefits that somewhat offset the compound’s
toxicity.34,35

Large-scale exposure events led to a strong research focus on
the neurotoxicity of MeHg,36 which readily crosses the placenta
and blood–brain barrier.37 MeHg biomagnifies from mother to fe-
tus,38,39 so neurological damage from high exposure during preg-
nancy is typically greater in the fetus than in the mother.38,39

Beyond its neurotoxic effects, MeHg has been associated with
cardiovascular40,41,42,43,44 and immune system45 disorders.
Potential cancer links have also been reported46 but are much less
established than for iAs. In a study of young children, Karagas
et al. reported associations between early-life Hg exposures (as
estimated by toenail and urine samples) and increased blood pres-
sure, which is an important risk factor for hypertension in adult-
hood.44 “Capturing these [exposure-related] changes early gives
us the opportunity to intervene and positively impact lifelong
health,” says Karagas.

In still another associated outcome, Matthew Rand, an associ-
ate professor of environmental medicine at the University of
Rochester, studies the role of MeHg in skeletal muscle disor-
ders.47 “These conditions have traditionally been attributed to
central nervous system disruptions,” says Rand. “But skeletal
muscle abnormalities may also cause motor symptoms, which
has been explored much less.”

Metabolism by Human and Microbial Enzymes
The human gut microbiome plays a substantial role in the metab-
olism—and hence toxicity—of iAs.48 This may also be true for
MeHg, but the exact process is largely unknown.49

The human enzyme AS3MT metabolizes iAs via methylation
in the liver50—a complex, multistep process. Of the intermediate
organic arsenicals generated in that process, some are more and
others less toxic than iAs.51 After passing through the kidneys,
about 90% of ingested iAs eventually leaves the body in urine and
less than 10% in feces, although this varies across species and may
depend on whether exposure comes from water or food.52,53,54

The liver also releases some arsenicals into bile, which flows into

the small intestine to help digest dietary fats.55 Arsenicals may
accumulate in tissues, particularly the kidneys.56

Although it has long been known that microbes in the human
gut also methylate iAs,57 researchers are still exploring the rela-
tive roles of human and microbial genes. A study led by Seth
Walk, an associate professor of microbiology and cell biology at
Montana State University, found that a healthy human micro-
biome transferred into germ-free As3mt knockout mice via fecal
transplant completely protected the mice against the lethal effects
of acute iAs exposure.48 This was partially due to the activity of
the arsenic methyltransferase (ArsM) gene cluster58—the bacte-
rial analog of the human AS3MT gene—in the common gut
microbe Faecalibacterium prausnitzii.48

Walk’s report48 revealed a surprisingly large collective role
of gut microbes in host toxicity. In a follow-up study, his group
transferred Escherichia coli bacteria into the gut of germ-free
mice so that the mouse microbiome contained only these bacteria.
Some mice received E. coli that had been genetically manipulated
to produce a specific arsenic-binding protein. These animals
excreted significantly more arsenic in stool than controls without
the protein, resulting in less organ accumulation. The study
showed that this single microbial protein was sufficient to protect
the mice against the lethal effects of arsenic.59

Ingested MeHg is absorbed by the blood and carried to target
tissues, including the brain and the developing fetus. Most MeHg
is excreted from the liver into bile and enters the enterohepatic
(intestine–liver) cycle. This cycle promotes the biomagnification
of MeHg because it allows the metal to reenter systemic circula-
tion.60 Up to 95% of ingested MeHg is eventually excreted in the
feces and the remainder in the urine as iHg. MeHg leaves the
body much more slowly than iAs, at an approximate rate of 1.4%
per day.60

Elimination of MeHg from the body requires demethylation,
but the chemical bond between carbon and mercury is difficult to
break.61 Researchers reported in the 1970s that rodents depleted
of their gut microbes had reduced excretion rates and increased
tissue retention times of MeHg in the brain and other
organs.62,63,64 This suggests that specific gut microbes may per-
form the demethylation reaction and could reduce human toxic-
ity.48 However, underlying mechanisms and microbial species
have not yet been identified.60

“The bacterial Mer [gene cluster] is a well-known enzymatic
demethylation system, but there is little evidence that it is present
in the human gut,” says Rand. “Demethylation in the gut lumen
may involve a consortium of bacteria or an abiotic rather than en-
zymatic process.” Abiotic processes in living cells may be driven
by physical conditions such as temperature, pH, water, or oxygen
levels.65

Variations in Toxicity
The typical half-life in the human body is 4 days for iAs66,67 and
50 days for MeHg,60 but people with similar exposure levels
metabolize the metals at variable rates. This is especially true for
MeHg, where reported half-lives range from less than 30 to more
than 120 days.60 The reasons for this variation include physiolog-
ical, genetic, and microbial factors.

Sex, age, and muscle mass are physiological influences on tox-
icity. For example, in humans and other species, females may
methylate iAs more efficiently than males.50 For MeHg, Rand’s
group developed computational pharmacokinetic models that pre-
dicted a shorter MeHg half-life in women than men and a shorter
half-life in children than adults.49 The models also identified skele-
tal muscle mass as a potential storage compartment that can delay
the fecal excretion of MeHg.49 Because both iAs and MeHg are
transported across the gut epithelium into the bloodstream and
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from the liver into the blood or bile, any host or microbial effects
on transport efficiency, gut barrier function, and tissue absorption
rates also modulate metabolism and body burden.54,68,69,70,71

AS3MT is the major genetic factor that influences iAs metabo-
lism; multiple other genes72 and epigenetic factors73 make
smaller contributions. The evolutionary importance of AS3MT is
supported by studies led by Karin Broberg, a professor of envi-
ronmental medicine at the Karolinska Institute and Lund
University, Sweden. She identified a positive AS3MT selection
signature in the genome of an Indigenous population in the
Andes Mountains of Argentina.74 These people have consumed
drinking water with high iAs concentrations for thousands of
years. The absence of typical arsenic-related health effects and
much higher frequencies of several AS3MT variants, compared
with genetically similar communities without high iAs expo-
sures, suggest that this population has developed iAs resistance
via natural selection.74

A higher frequency of ArsM-carrying gut microbes may also
contribute, suggests Broberg, but that hypothesis has not been
studied yet. The geologic contamination of drinking water has
existed for a very long time, whereas human-caused increases in
atmospheric Hg are more recent. This difference, says Broberg,
may explain the evolution of the AS3MT defense system in many
species58,75,76 and the lack of an analogous MeHg system. “I find
it very interesting that the same arsenic defense system exists in
bacteria and humans because this is not the case for many other
environmental chemicals,” she says.

Exposure and Microbial Diversity
Microbial influences on human toxicity go beyond the direct me-
tabolism of iAs. Because both metals have historically been used

as antimicrobial agents,77,78 it is plausible that they may reduce
the diversity of microbes in the gut. “This is especially worrisome
for infants and young children,” says Juliette Madan, a neonatal
perinatologist and professor of epidemiology at the Dartmouth
Geisel School of Medicine. “[Exposure to metals may change]
the developmental trajectory of their gut microbiome during a
critical period when their immune system is being trained and
their body is learning to metabolize food.”

Analyzing data from the New Hampshire Birth Cohort Study,
Madan and Karagas found that higher urine As concentrations in
babies were associated with a reduced frequency in stool of multi-
ple microbial genera involved in immune system development.79

A later analysis, which used toenail clippings to assess exposure to
a variety of trace elements, associated higher As levels with
reduced gut microbial diversity in all the infants. The same associ-
ation was observed with higher Hg levels in a subset of babies.80

Higher MeHg concentrations in stool were also associated with
lower microbial diversity in a small study of pregnant women.81

Curtis Huttenhower, a professor of computational biology and
bioinformatics at the Harvard T.H. Chan School of Public
Health, notes that studies of exposure effects on microbial diver-
sity require special care because chronic health conditions, the
therapeutics used to treat them, and many dietary and environ-
mental exposures all affect microbiome composition in similar
ways. This means that quality control methods for laboratory and
statistical analyses of microbiome samples are critical to avoid
spurious associations.82,83

The known microbial influences on the human toxicity of iAs
and MeHg may only be the tip of the iceberg.84,85 In natural envi-
ronments, for example, the As defense systems of soil and
aquatic bacteria regulate an exceptionally wide range of cellular
processes beyond iAs methylation, including sugar transport,

This color-enhanced scanning electron micrograph shows different bacteria from a human fecal sample. Magnification 5,000× (at 10-cm wide image size).
The trillions of microbes in our gut have a dynamic relationship with environmental agents and may play a role in determining why some people experience
worse effects than others from the same exposure level. Image: © Eye of Science/Science Source.
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copper tolerance, and iron homeostasis.84 Walk says this fact—
along with recent rodent findings86—suggests that microbes in
the human gut may transform iAs in additional ways that indi-
rectly influence toxicity, perhaps by producing arsenicals that
more easily cross cell membranes. “We think the total microbial
influence on arsenic biochemistry is larger than the host’s and
likely involves many different types of biotransformation,” adds
Walk. “Methylation is just one of these.”

Similarly, says Sarah Rothenberg, an associate professor of
environmental health at Oregon State University, microbial influ-
ences on MeHg toxicity may not be restricted to demethylation.
“It is quite possible that gut microbes may help regulate neuro-
transmitters through the gut–brain axis, as some studies87,88 have
suggested,” she explains. In other words, the microbiome may
contribute to the notorious neurotoxic effects of MeHg through a
variety of mechanisms. Further study could clarify the full range
of bidirectional interactions between iAs, MeHg, and the gut
microbiome.

Exploring Structural and Dietary Interventions
Human exposure to As and Hg can be reduced by treatment and
regulatory actions. For example, arsenic removal plants have
greatly improved the quality of drinking water quality in parts of
Chile,89 and researchers elsewhere are exploring new ways of treat-
ing drinking water at the community and household levels.90,91

National policies and international agreements have helped
reduce mercury emissions from power plants.92,93 Rothenberg
has shown that certain water management strategies for rice

paddies can substantially reduce MeHg levels in rice94; simi-
lar reductions may be possible for organic arsenicals.95

Breastfeeding can help protect babies from exposure to iAs in
both powdered infant formula and drinking water,96 although
breast milk can carry MeHg.97

When exposures are impossible to avoid, emerging evidence
for microbial influences on metal toxicity supports dietary sup-
plements as potential interventions. This strategy holds promise
because the microbiome is known to be dynamic98 and modifi-
able.99 For example, eating yogurt enriched with Lactobacillus
rhamnosus was associated with lower blood concentrations of As
and Hg in pregnant women in a small pilot study in Tanzania.100

In larger trials, folic acid supplements were associated with more
efficient iAs metabolism in folate-deficient Bangladeshi adults
with high exposure.101,102

Promoting the growth of ArsM-carrying species such as F.
prausnitzii, which has already been studied as a probiotic,103,104

may be another strategy. Environmental microbes are capable of
removing iAs from water through bioaccumulation,105,106 so
future research could explore multiple mechanisms for detoxify-
ing iAs, including methylation and accumulation within gut
microbes.48

Because none of the bacterial species that demethylate MeHg
in the environment107 have been found in human stool, dietary
supplements that would reduce the compound’s toxicity are more
challenging to design.108 Wheat bran and other grains,109,110

fruits,110,111 compounds in plants,112 and dietary supplements113

may accelerate the excretion of MeHg as inorganic Hg, and mi-
crobial contributions to some of these processes are plausible.

For millennia, populations in the Andean highlands have consumed water with naturally high concentrations of arsenic. Studies in towns such as San Antonio
de Los Cobres, Argentina (shown), indicate that the people here have evolved resistance to arsenic toxicity. Image: © iStockphoto/FernandoQuevedo.
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For example, a fiber-rich diet of wheat bran reduced the half-life
of MeHg in mice by more than 40%—most likely, the authors
speculated, due to increased demethylation by gut microbiota.109

These types of studies generally support the feasibility of pre-
cision nutrition—making dietary recommendations based on an
individual’s genetic makeup, health history, lifestyle, environ-
mental exposures, and microbiome composition.114 “Modifying
the microbiome therapeutically for a specific purpose—like pro-
moting iAs methylation or MeHg demethylation—is easier to do
early in life when the microbial community is not yet fully estab-
lished,” says Huttenhower. “Later in life, it will require bigger
perturbations, such as fecal transplants.” That procedure, he adds,
already works very well in patients with Clostridium difficile
infections and inflammatory bowel disease.

Madan agrees with the importance of early interventions. She
particularly encourages the promotion of breastfeeding as one
way to reduce iAs exposure and shape a healthy microbiome.115

(In some communities, however, this may require providing
resources and support for nursing women.116) Testing the effec-
tiveness of probiotic supplements is another promising strategy
because, she says, “diet is how we change lives, especially in
high-risk populations.”

Walk is encouraged by the wide range of biotransformations
performed by environmental microbes. Establishing microbes in
the human gut to perform a specific function, he says, may be a
feasible alternative when exposures cannot be avoided. This, he
believes, “will drive the next phase of developing probiotics and
microbiome-focused therapies.”

Silke Schmidt, PhD, writes about science, health, and the environment from
Madison, Wisconsin.
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